mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos
نویسندگان
چکیده
Because maturing oocytes and early embryos lack appreciable transcription, posttranscriptional regulatory processes control their development. To better understand this control, we profiled translational efficiencies and poly(A)-tail lengths throughout Drosophila oocyte maturation and early embryonic development. The correspondence between translational-efficiency changes and tail-length changes indicated that tail-length changes broadly regulate translation until gastrulation, when this coupling disappears. During egg activation, relative changes in poly(A)-tail length, and thus translational efficiency, were largely retained in the absence of cytoplasmic polyadenylation, which indicated that selective poly(A)-tail shortening primarily specifies these changes. Many translational changes depended on PAN GU and Smaug, and these changes were largely attributable to tail-length changes. Our results also revealed the presence of tail-length-independent mechanisms that maintained translation despite tail-length shortening during oocyte maturation, and prevented essentially all translation of bicoid and several other mRNAs before egg activation. In addition to these fundamental insights, our results provide valuable resources for future studies.
منابع مشابه
Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA.
Nanos protein promotes abdominal structures in Drosophila embryos by repressing the translation of maternal hunchback mRNA in the posterior. To study the mechanism of nanos-mediated translational repression, we first examined the mechanism by which maternal hunchback mRNA is translationally activated. In the absence of nanos activity, the poly(A) tail of hunchback mRNA is elongated concomitant ...
متن کاملRapid ATP-dependent deadenylation of nanos mRNA in a cell-free system from Drosophila embryos.
Shortening of the poly(A) tail (deadenylation) is the first and often rate-limiting step in the degradation pathway of most eukaryotic mRNAs and is also used as a means of translational repression, in particular in early embryonic development. The nanos mRNA is translationally repressed by the protein Smaug in Drosophila embryos. The RNA has a short poly(A) tail at steady state and decays gradu...
متن کاملMultiple sequence elements and a maternal mRNA product control cdk2 RNA polyadenylation and translation during early Xenopus development.
Cytoplasmic poly(A) elongation is one mechanism that regulates translational recruitment of maternal mRNA in early development. In Xenopus laevis, poly(A) elongation is controlled by two cis elements in the 3' untranslated regions of responsive mRNAs: the hexanucleotide AAUAAA and a U-rich structure with the general sequence UUUUUAAU, which is referred to as the cytoplasmic polyadenylation elem...
متن کاملTime Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse
Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...
متن کاملMutations that perturb poly(A)-dependent maternal mRNA activation block the initiation of development.
Translational recruitment of maternal mRNAs is an essential process in early metazoan development. To identify genes required for this regulatory pathway, we have examined a collection of Drosophila female-sterile mutants for defects in translation of maternal mRNAs. This strategy has revealed that maternal-effect mutations in the cortex and grauzone genes impair translational activation and cy...
متن کامل